A Stress Test for Robustness of Photo Response Nonuniformity (Camera Sensor Fingerprint) Identification on Smartphones

Author:

Martín-Rodríguez Fernando1ORCID,Isasi-de-Vicente Fernando1,Fernández-Barciela Mónica1ORCID

Affiliation:

1. Atlanttic Research Center for Telecommunication Technologies, University of Vigo, C/Maxwell S/N (Ciudad Universitaria), 36310 Vigo, Spain

Abstract

In the field of forensic imaging, it is important to be able to extract a camera fingerprint from one or a small set of images known to have been taken by the same camera (or image sensor). Note that we are using the word fingerprint because it is a piece of information extracted from images that can be used to identify an individual source camera. This technique is very important for certain security and digital forensic situations. Camera fingerprint is based on a certain kind of random noise present in all image sensors that is due to manufacturing imperfections and is, thus, unique and impossible to avoid. Photo response nonuniformity (PRNU) has become the most widely used method for source camera identification (SCI). In this paper, a set of attacks is designed and applied to a PRNU-based SCI system, and the success of each method is systematically assessed both in the case of still images and in the case of video. An attack method is defined as any processing that minimally alters image quality and is designed to fool PRNU detectors or, in general, any camera fingerprint detector. The success of an attack is assessed as the increment in the error rate of the SCI system. The PRNU-based SCI system was taken from an outstanding reference that is publicly available. Among the results of this work, the following are remarkable: the use of a systematic and extensive procedure to test SCI methods, very thorough testing of PRNU with more than 2000 test images, and the finding of some very effective attacks on PRNU-based SCI.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3