Source Camera Identification with a Robust Device Fingerprint: Evolution from Image-Based to Video-Based Approaches

Author:

Manisha 12ORCID,Li Chang-Tsun2ORCID,Kotegar Karunakar A.1ORCID

Affiliation:

1. Department of Data Science and Computer Applications, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India

2. School of Information Technology, Deakin University, Geelong 3216, Australia

Abstract

With the increasing prevalence of digital multimedia content, the need for reliable and accurate source camera identification has become crucial in applications such as digital forensics. While effective techniques exist for identifying the source camera of images, video-based source identification presents unique challenges due to disruptive effects introduced during video processing, such as compression artifacts and pixel misalignment caused by techniques like video coding and stabilization. These effects render existing approaches, which rely on high-frequency camera fingerprints like Photo Response Non-Uniformity (PRNU), inadequate for video-based identification. To address this challenge, we propose a novel approach that builds upon the image-based source identification technique. Leveraging a global stochastic fingerprint residing in the low- and mid-frequency bands, we exploit its resilience to disruptive effects in the high-frequency bands, envisioning its potential for video-based source identification. Through comprehensive evaluation on recent smartphones dataset, we establish new benchmarks for source camera model and individual device identification, surpassing state-of-the-art techniques. While conventional image-based methods struggle in video contexts, our approach unifies image and video source identification through a single framework powered by the novel non-PRNU device-specific fingerprint. This contribution expands the existing body of knowledge in the field of multimedia forensics.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3