Characterizing the Contribution of Functional Microbiota Cultures in Pit Mud to the Metabolite Profiles of Fermented Grains

Author:

Wan Yingdong1,Huang Jun1,Tang Qiuxiang1ORCID,Zhang Suyi2,Qin Hui2,Dong Yi2,Wang Xiaojun2,Qiu Chuanfeng2,Huang Mengyang2,Zhang Zhu1,Zhang Yi1,Zhou Rongqing1ORCID

Affiliation:

1. College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China

2. Luzhou Lao Jiao Co., Ltd., Luzhou 646699, China

Abstract

Elevating the flavor profile of strong flavors Baijiu has always been a focal point in the industry, and pit mud (PM) serves as a crucial flavor contributor in the fermentation process of the fermented grains (FG). This study investigated the influence of wheat flour and bran (MC and FC) as PM culture enrichment media on the microbiota and metabolites of FG, aiming to inform strategies for improving strong-flavor Baijiu flavor. Results showed that adding PM cultures to FG significantly altered its properties: FC enhanced starch degradation to 51.46% and elevated reducing sugar content to 1.60%, while MC increased acidity to 2.11 mmol/10 g. PM cultures also elevated FG’s ester content, with increases of 0.36 times for MC-FG60d and 1.48 times for FC-FG60d compared to controls, and ethyl hexanoate rising by 0.91 times and 1.39 times, respectively. Microbial analysis revealed that Lactobacillus constituted over 95% of the Abundant bacteria community, with Kroppenstedtia or Bacillus being predominant among Rare bacteria. Abundant fungi included Rasamsonia, Pichia, and Thermomyces, while Rare fungi consisted of Rhizopus and Malassezia. Metagenomic analysis revealed bacterial dominance, primarily consisting of Lactobacillus and Acetilactobacillus (98.80–99.40%), with metabolic function predictions highlighting genes related to metabolism, especially in MC-FG60d. Predictions from PICRUSt2 suggested control over starch, cellulose degradation, and the TCA cycle by fungal subgroups, while Abundant fungi and bacteria regulated ethanol and lactic acid production. This study highlights the importance of PM cultures in the fermentation process of FG, which is significant for brewing high-quality, strong-flavor Baijiu.

Funder

Cooperation Project of Luzhou Lao Jiao Co., Ltd. and Sichuan University

Luzhou Key Research and Development Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3