Non-Destructive Inspection of Physicochemical Indicators of Lettuce at Rosette Stage Based on Visible/Near-Infrared Spectroscopy

Author:

Li Wei1,Wang Qiaohua12ORCID,Wang Yingli1ORCID

Affiliation:

1. College of Engineering, Huazhong Agricultural University, Wuhan 430070, China

2. Key Laboratory of Agricultural Equipment in the Middle and Lower Reaches of the Yangtze River, Ministry of Agriculture, Wuhan 430070, China

Abstract

Lettuce is a globally important cash crop, valued by consumers for its nutritional content and pleasant taste. However, there is limited research on the changes in the growth indicators of lettuce during its growth period in domestic settings. Quality assessment primarily relies on subjective evaluations, resulting in significant variability. This study focused on hydroponically grown lettuce during the rosette stage and investigated the patterns of changes in the indicators and spectral curves over time. By employing spectral preprocessing and selecting characteristic wavelengths, three models were developed to predict the indicators. The results showed that the optimal model structures were S_G-UVE-PLSR (SSC and vitamin C) and Nor-CARS-PLSR (moisture content). The PLSR models achieved prediction set correlation coefficients of 0.8648, 0.8578, and 0.8047, with residual prediction deviations of 1.9685, 1.9568, and 1.6689, respectively. The optimal models were integrated into a portable device, using real-time analysis software written in Matlab2021a, for the prediction of the physicochemical indicators of lettuce during the rosette stage. The results demonstrated prediction set correlation coefficients of 0.8215, 0.8472, and 0.7671, with root mean square errors of prediction of 0.5348, 1.5813, and 2.3347 for a sample size of 180. The small discrepancies between the predicted and actual values indicate that the developed device can meet the requirements for real-time detection.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3