One-Pot Preparation of Mixed-Mode Reversed-Phase Anion-Exchange Silica Sorbent and its Application in the Detection of Cyclopiazonic Acid in Feeds and Agricultural Products

Author:

Hu Xuan12,Liu Li12,Peng Maomin12,Zheng Dan12,Xia Hong12,Zhou Youxiang12,Peng Lijun1,Peng Xitian2

Affiliation:

1. Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, China

2. Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Wuhan 430064, China

Abstract

A novel co-bonded octyl and pyridine silica (OPS) sorbent was prepared and applied for the solid phase extraction (SPE) of cyclopiazonic acid (CPA, a type of mycotoxin) in feed and agricultural products for the first time. A simple mixed-ligand one-pot reaction strategy was employed for OPS sorbent preparation. Nitrogen adsorption–desorption measurements, elemental analysis (EI), thermal gravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FT-IR) analysis demonstrated the successful immobilization of octyl and quaternary ammonium groups onto the surface of silica gel. The large specific surface area, high-density functional groups, and mixed-mode anion-exchange characteristics of these silica particles made them the ideal material for the efficient extraction of CPA. Additionally, the OPS sorbents displayed excellent batch-to-batch reproducibility, satisfactory reusability, and low cost. The SPE parameters were optimized to explore the ionic and hydrophobic interactions between CPA and the functional groups, and the ultra-high performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry (UPLC-MS/MS) parameters were optimized to obtain a desirable extraction efficiency and high sensitivity to CPA. Meanwhile, the OPS sorbent presented a satisfactory extraction selectivity and low matrix effect. Under the optimized conditions, our developed CPA detection method was used to determine CPA level in rice, wheat flour, corn flour, peanut, and feed samples, exhibiting a lower detection limit, better linearity, higher sensitivity, and satisfactory extraction recovery rate than previously reported methods. Therefore, our method can be preferentially used as a method for the detection of CPA in agricultural products and feeds.

Funder

Hubei Province Agricultural Key Core Technology Research Project

Research and Development Program of Hubei Province, China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3