New Concept of Combined Microwave Delay Lines for Noise Radar-Based Remote Sensors

Author:

Szczepaniak ,Susek

Abstract

Delay lines with a tunable length are used in a number of applications in the field of microwave techniques. The digitally-controlled analogue wideband delay line is particularly useful in noise radar applications as a precise detector of movement. In order to perform coherent reception in the noise radar, a delay line with a variable delay value is required. To address this issue, this paper comprises a new concept of a digitally-controlled delay line with a set of fine distance gates. In the paper, a solution for micro-movement detection is proposed, which is based on direct signal processing in the time domain with the use of a microwave analogue correlator. This concept assumes the use of a microwave analogue tapped delay line structure. It was found that the optimal solution for a noise radar with an analogue signal correlator is a combined delay line consisting of switched reference sections, a tapped delay line, and a precision phase shifter. The combined delay line presented in this paper is dedicated to serving as the adjustable reference delay for a noise radar intended for the detection of micro-movement. The paper contains the calculation results and delay line implementation for a given example. The new structure of the analogue tapped delay line with the calculation of optimal parameters is also presented. The precise detector of movement can be successfully used for the remote sensing of human vital signs (especially through-the-wall), e.g., breathing and heart beating, with the simultaneous determination of position.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. INTEGRATING ARTIFICIAL INTELLIGENCE AND MATHEMATICAL MODELS FOR PREDICTIVE MAINTENANCE IN INDUSTRIAL SYSTEMS;FUDMA JOURNAL OF SCIENCES;2024-06-30

2. Bandpass NGD investigation of O-shape fully distributed structure with S-matrix modelling;COMPEL - The international journal for computation and mathematics in electrical and electronic engineering;2021-07-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3