Bandpass NGD investigation of O-shape fully distributed structure with S-matrix modelling

Author:

Gu Taochen,Wan Fayu,Nebhen Jamel,Murad Nour Mohammad,Rossignol Jérôme,Lallechere Sebastien,Ravelo Blaise

Abstract

Purpose The aim of this paper is to provide the theoretical conceptualization of a bandpass (BP) negative group delay (NGD) microstrip circuit. The main objective is to provide a theorization of the particular geometry of the microstrip circuit with experimental validation of the NGD effect. Design/methodology/approach The methodology followed in this work is organized in three steps. A theoretical model is established of equivalent S-parameters model using Y-matrix analysis. The GD analysis is also presented by showing that the circuit presents a possibility to generate NGD function around certain frequencies. To validate the theoretical model, as proof-of-concept (POC), a microstrip prototype is designed, fabricated and tested. Findings This work clearly highlighted the modelled (analytical design model), simulated (ADS simulation tool) and measured results are in good correlation. Relying on the proposed theoretical, numerical and experimental models, the BP NGD behaviour is validated successfully with GD responses specified by the NGD centre frequency: it is observed around 2.35 GHz, with an NGD value of about −2 ns. Research limitations/implications It is to be noticed the proposed GD analysis requires limitations of the theoretical NGD model. It is depicted and validated through a POC demonstrating that the circuit presents a possibility to generate NGD function around certain frequencies (assuming constraints around usable frequency and bandwidth). Practical implications The NGD O-shape topology developed in this work could be exploited in the future in the microwave and radiofrequency context. Thus, it is expected to develop GD equalization technique for radiofrequency and microwave filters, GD compensation of oscillators, filters and communication systems, design of broadband switch-less bi-directional amplifiers, efficient enhancement of feedforward amplifiers, design method of frequency independent phase shifters with negligible delay, synthesis method of arbitrary-angle beamforming antennas. The BP NGD behavior may also be successfully used for the reduction of resonance effect for the electronic compatibility (EMC) of electronic devices. Social implications The non-conventional NGD O-circuit theoretical development and validation through experimental POC could be exploited by academic and industrial developers in the area of wireless communications including, but not restricted to, 5-generation communication systems. The use of the remarkable NGD effect is also useful for the mitigation of electromagnetic interferences between electronic devices and more and more complex electromagnetic environment (current development of Internet of Things[ IoT]). Originality/value The originality of this work relies on the new NGD design proposed in this work including the extraction of S-matrix parameters of the microstrip novel structure designed. The validation process based upon an experimental POC showed very interesting levels of NGD O-circuit (nanosecond-GD duration).

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Reference45 articles.

1. Synthesis for negative group delay circuits using distributed and second-order RC circuit configurations;IEICE Transactions on Electronics,2009

2. Metamaterial cell-based superstrate towards bandwidth and gain enhancement of quad-band CPW-fed antenna for wireless applications;Sensors,2020

3. Broadband negative group delay networks for compensation of oscillators, filters and communication systems;Electronics Letters,2000

4. On the negative delay time of a narrow-band signal as it passes through the resonant filter of absorption;Radiophysics and Quantum Electronics,2004

5. Transmission-type negative group delay networks using coupled line doublet structure;IET Microwaves, Antennas and Propagation,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3