INTEGRATING ARTIFICIAL INTELLIGENCE AND MATHEMATICAL MODELS FOR PREDICTIVE MAINTENANCE IN INDUSTRIAL SYSTEMS

Author:

Ohoriemu Okeoghene Blessing,Ogala Justin Onyarin

Abstract

Predictive maintenance is a critical task for ensuring the reliability and efficiency of industrial systems. The integration of artificial intelligence (AI) and mathematical models has shown great potential in improving the accuracy and efficiency of predictive maintenance. This study provides an overview of the different types of mathematical models used for predictive maintenance, including physics-based, data-driven, and hybrid models. The study also discusses how AI techniques, such as machine learning and deep learning, can be used to enhance the accuracy and efficiency of predictive maintenance models. Additionally, the article highlights some of the challenges and limitations of integrating AI and mathematical models for predictive maintenance in industrial systems. Finally, this study provides a case study to demonstrate the practical application of the integrated approach for predictive maintenance in an industrial setting. This article aims to provide a comprehensive overview of the state-of-the-art in integrating AI and mathematical models for predictive maintenance and to provide guidance for researchers and practitioners working in this field.

Publisher

Federal University Dutsin-Ma

Reference35 articles.

1. Aderibigbe, F.M. and Apanapudor, J.S) . (2014aOn the Extended Conjugate Gradient Method (ECGM) Algorithm for Discrete Optimal Control Problems and some of ts features, IOSR Journal of Mathematics (IOSR-JM), Vol. 10(3)(version IV), pp. 16 – 22

2. Ahad, N.A., Apanapudor, J.S. and Arunaye, F.I.(2021): Robust MULtivariate Correlation Techniques: A Confirmation Analysis using COVID-19 Data Set, Pertanika Journal of Science and Technology, Vol. 29(2), pp. 999 - 1015.

3. Apanapudor, J.S.and Aderibigbe, F.M. (2015): Computing Techniques for the Conjugate Search Directions of the Bouhaya, A., (2021). A Review of Artificial Intelligence Techniques for Predictive Maintenance in Industry. Journal of Maintenance Engineering, 6(2), 117–138. https://doi.org/10.29252/jme.6.2.117

4. Chen, M., & Chen, Z. (2018). Data-Driven Predictive Maintenance: A Survey. Journal of Manufacturing Systems, 48, 144–156. https://doi.org/10.1016/j.jmsy.2018.03.003

5. Ge, M., & Liu, Y. (2021). A Comprehensive Review of Data-Driven Maintenance. IEEE Transactions on Reliability, 70(2), 932–953. https://doi.org/10.1109/TR.2021.3072278

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3