Optimization of Production of Polyhydroxyalkanoates (PHAs) from Newly Isolated Ensifer sp. Strain HD34 by Response Surface Methodology

Author:

Khamkong Thitichaya,Penkhrue WatsanaORCID,Lumyong SaisamornORCID

Abstract

Petroleum-based plastics have become a big problem in many countries because of their non-degradability and that they become microplastics in the environment. This study focused on the optimization of production medium and conditions of polyhydroxyalkanoates (PHAs), which are biodegradable bioplastics and are accumulated in microbial cells. Among 341 isolates from 40 composted soil samples, the best isolate was the HD34 strain, which was identified using morphological, molecular, and biochemical methods. The results showed that the strain was most closely related to Ensifer adhaerens LMG20216T, with 99.6% similarity. For optimization of production medium and conditions using response surface methodology, it exhibited an optimal medium containing 3.99% (w/v) of potato dextrose broth (PDB) and 1.54% (w/v) of D-glucose with an adjusted initial pH of 9.0. The optimum production was achieved under culture conditions of a temperature of 28 °C, inoculum size of 2.5% (v/v), and a shaking speed of 130 rpm for 5 days. The results showed the highest PHA content, total cell dry weight, and PHA yield as 72.96% (w/w) of cell dry weight, 9.30 g/L, and 6.78 g/L, respectively. The extracted PHA characterization was studied using gas chromatography, 1H NMR, FTIR, and XRD. The results found that the polymer was a polyhydroxybutyrate (PHB) with a melting temperature (Tm) and degradation temperature (Td) of 173.5 °C and 260.8 °C, respectively.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference59 articles.

1. Plastics—The Facts 2021https://plasticseurope.org/knowledge-hub/plastics-the-facts-2021/

2. Polyhydroxyalkanoates, biopolyesters from renewable resources: Physiological and engineering aspects

3. Products of dehydration and of polymerization of β-hydroxybutyric acid;Lemoigne;Bull. Soc. Chem. Biol.,1926

4. Cost-effective defined medium for the production of polyhydroxyalkanoates using agricultural raw materials

5. The role of PHB metabolism in the symbiosis of rhizobia with legumes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3