Electrospun Shape-Stabilized Phase Change Materials Based on Photo-Crosslinked Polyethylene Oxide

Author:

Fredi GiuliaORCID,Kianfar ParnianORCID,Dalle Vacche SaraORCID,Pegoretti AlessandroORCID,Vitale AlessandraORCID

Abstract

Phase change materials (PCMs) in the form of fibers or fibrous mats with exceptional thermal energy storage ability and tunable working temperature are of high interest to produce smart thermoregulating textiles, useful for increasing human thermal comfort while avoiding energy waste. Common organic PCMs suffer from instability in their molten state, which limits their applicability as highly performing fibrous systems. In this work, electrospun fibrous mats made of polyethylene oxide (PEO), a PCM with excellent thermal properties and biocompatibility, were fabricated and their shape instability in the molten state was improved through UV photo-crosslinking. The characterization aimed to assess the performance of these shape-stable electrospun mats as nanofibrous PCMs for thermal management applications. In addition to an enhanced resistance to water-based solvents, UV-cured electrospun PEO mats demonstrated a remarkable latent heat (≈112 J/g), maintained over 80 heating/cooling cycles across the phase change temperature. Moreover, their morphological stability above their melting point was demonstrated both macroscopically and microscopically, with the retention of the initial nanofibrous morphology. Tensile mechanical tests demonstrated that the UV crosslinking considerably enhanced the ultimate properties of the fibrous mat, with a five-fold increase in both the tensile strength (from 0.15 MPa to 0.74 MPa) and the strain at break (from 2.5% to 12.2%) compared to the uncrosslinked mat. In conclusion, the photo-crosslinked electrospun PEO material exhibited high thermal properties and good shape stability without displaying leakage; accordingly, in the proposed PCM system, the necessity for encapsulation or use of a supporting layer has been eliminated. Photo-crosslinking thus proved itself as an effective, fast, and environmentally friendly method to dramatically improve the shape-stability of nanofibrous PEO electrospun mats for smart thermoregulating textiles.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3