A critical review of polymer support‐based shape‐stabilized phase change materials for thermal energy storage applications

Author:

Bidiyasar Rahul1,Kumar Rohitash2ORCID,Jakhar Narendra1ORCID

Affiliation:

1. Department of Physics University of Rajasthan Jaipur Rajasthan India

2. Defence Laboratory DRDO Jodhpur Jodhpur Rajasthan India

Abstract

AbstractPhase change materials (PCMs) have drawn considerable attention in recent years due to their capability of storing and releasing thermal energy during phase transformation. However, traditional PCMs face challenges like limited thermal conductivity, leakage while phase transformation from solid to liquid, thermal degradation, and durability. Researchers have concentrated on creating shape‐stabilized PCMs (SSPCMs) employing polymers as the supporting matrix to overcome these difficulties and incorporating highly thermally conductive additives to improve thermal conductivity. Compared to conventional PCMs, polymer‐based SSPCMs are often more flexible, lightweight, and durable and may be easily customized according to specific applications. Various factors like PCM loading, thermal cyclability, cost‐effectiveness and environmental concerns must be considered while constructing polymer‐based SSPCMs. This review paper comprehensively explored various polymers, including polyurethane, polyacrylates, polyolefin, and so on, as promising supporting materials for SSPCMs due to their relatively high mechanical strength, compatibility with PCM, excellent thermal stability, and chemical resistance. Natural polymers like chitosan, cellulose, and starch are also considered for eco‐friendly solutions. We have also discussed about specific properties of each polymer, their cost‐effectiveness, and the environmental impact while developing such SSPCMs to guide researchers in material selection. Applications of polymer‐based SSPCMs in solar energy storage, medical devices, building materials, electronics, transportation industry, and waste heat recovery are briefly discussed. Finally, some future development areas have been discussed to attract the attention of new researchers in this field. The information provided in this review will assist readers in understanding polymer‐based SSPCM and selecting their desired polymer for support material with diverse application methods.

Funder

Council of Scientific and Industrial Research, India

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3