Electrospun PEO/PEG fibers as potential flexible phase change materials for thermal energy regulation

Author:

Soo Xiang Yun Debbie1ORCID,Tan Sze Yu1,Cheong Augustine Kok Heng1,Xu Jianwei123,Liu Zhiyuan4,Loh Xian Jun125,Zhu Qiang126ORCID

Affiliation:

1. Institute of Materials Research and Engineering (IMRE) Agency for Science, Technology and Research (A*STAR) Innovis Singapore

2. Institute of Sustainability for Chemicals Energy and Environment (ISCE2) Agency for Science, Technology and Research (A*STAR) Jurong Island Singapore

3. Department of Chemistry National University of Singapore Singapore Singapore

4. Shenzhen Institute of Advanced Technology (SIAT) Chinese Academy of Sciences (CAS) Shenzhen People's Republic of China

5. Department of Material Science and Engineering National University of Singapore Singapore Singapore

6. School of Chemistry Chemical Engineering and Biotechnology Nanyang Technological University Singapore Singapore

Abstract

AbstractPolyethylene glycol (PEG) is widely used as phase change materials (PCM) due to their versatile working temperature and high latent heat. However, the low molecular weight of PEG prevents from the formation of flexible microfibers, and the common leakage problem associated with solid–liquid PCM further hinders their applications in various fields. To address these challenges, polyethylene oxide (PEO) is incorporated as the supporting matrix for PEG, leading to a successful electrospinning of fibrous mats. Due to the similar chemical nature of both PEG and PEO, the blended composites show great compatibility and produce uniform electrospun fibers. The thermal properties of these fibers are characterized by DSC and TGA, and supercooling for the PEG(1050) component is effectively reduced by 75–85%. The morphology changes before and after leakage test are analyzed by SEM. Tensile and DMA tests show that the presence of PEG(1050) component contributes to plasticization effect, improving mechanical and thermomechanical strength. The ratio of PEO(600K):PEG(1050) at 7:3 affords the optimal performance with good chemical and form‐stability, least shrinkage, and uniformity. These fibrous mats have potential applications in areas of food packaging, flexible wearable devices, or textiles to aid in thermal regulation.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3