Effect of Sintering Factors on Properties of Al-Rich PTFE/Al/TiH2 Active Materials

Author:

Wang Yilei,Jiang Chunlan,Wang ZaichengORCID

Abstract

Sintering process is an important part of the specimen preparation process, which directly affects the properties of materials. In order to obtain the best sintering control factors of Al-rich PTFE/Al/TiH2 active materials, Al-rich PTFE/Al/TiH2 active specimens with different sintering control factors were prepared using a mold pressing sintering method. A quasi-static compression experiment was carried out on a universal material testing machine, and a real stress-strain curve was obtained. The effects of sintering control factors on the properties of Al-rich PTFE/Al/TiH2 active materials were analyzed by means of mechanical parameters such as compressive strength, failure strain and toughness. SEM and XRD were used to analyze the microstructure and phase of the sintered samples. The results show that: (1) With the increase of cooling rate, the density, yield strength, strain hardening modulus, compressive strength and toughness of Al-rich Al/PTFE/TiH2 specimens decrease gradually, while the failure strain and pores of the specimens increase gradually. (2) With the increase of sintering temperature, the density, maximum true strain and toughness of the specimens first increase and then decrease, and the failure strain of the specimens gradually increases. When the sintering temperature is 360 °C, the PTFE matrix and particles inside the specimen are closely combined, a small number of particles are exposed on the PTFE matrix and there are a small number of voids. (3) With the increase of holding time at 360 °C, the strength and toughness of the material first decrease and then increase. When the holding time is 6 h, the interface between particles and matrix inside the specimen is the strongest, and the crack propagation inside the specimen is less. (4) When the sintering time increased from 1 h to 4 h at 315 °C, the compressive strength of the specimen increased by 1.62%, the toughness of the specimen decreased by 0.55% and the failure strain of the specimen decreased by 0.54%. The interface between PTFE matrix and particles is the strongest and the crack propagation is less in the specimen with a holding time of 4 h. (5) Above all, the optimum sintering parameters of Al-rich Al/PTFE/TiH2 materials are cooling rate of 25 °C/h, sintering temperature of 360 °C, holding time of 6 h and holding time of 4 h at 315 °C. (6) The reactivity of Al-rich Al/PTFE/TiH2 specimens with 10% content of TiH2 under static compression is not significantly affected by sintering parameters.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference29 articles.

1. Reactive Alloy for Inert Warheadshttp://www.virtualacquisitionshowcase.com/document/1472/briefing

2. Reactive Materialhttp://en.wikipedia.org/wiki/Reactive_material

3. Research status of MEMS micro initiators;Chen;J. Micronanoelectron. Technol.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3