Modeling of Polymer Composite Materials Chaotically Reinforced with Spherical and Cylindrical Inclusions

Author:

Berladir Kristina1ORCID,Zhyhylii Dmytro2ORCID,Gaponova Oksana1,Krmela Jan3ORCID,Krmelová Vladimíra4,Artyukhov Artem5ORCID

Affiliation:

1. Department of Applied Materials Science and Technology of Constructional Materials, Sumy State University, 2, Rymskogo-Korsakova St., 40007 Sumy, Ukraine

2. Department of Computational Mechanics Named after Volodymyr Martsynkovskyy, Sumy State University, 2, Rymskogo-Korsakova St., 40007 Sumy, Ukraine

3. Faculty of Mechanical Engineering, J. E. Purkyně University in Ustí nad Labem, Pasteurova 1, 400 96 Ustí nad Labem, Czech Republic

4. Faculty of Industrial Technologies in Púchov, Alexander Dubček University of Trenčín, I. Krasku 491/30, 02001 Púchov, Slovakia

5. Academic and Research Institute of Business, Economics and Management, Sumy State University, 2, Rymskogo-Korsakova St., 40007 Sumy, Ukraine

Abstract

The technical and economic efficiency of new PCMs depends on the ability to predict their performance. The problem of predicting the properties of PCMs can be solved by computer simulation by the finite element method. In this work, an experimental determination of the physical and mechanical properties of PTFE PCMs depending on the concentration of fibrous and dispersed filler was carried out. A finite element model in ANSYS APDL was built to simulate the strength and load-bearing capacity of the material with the analysis of damage accumulation. Verification of the developed computer model to predict the mechanical properties of composite materials was performed by comparing the results obtained during field and model experiments. It was found that the finite element model predicts the strength of chaotically reinforced spherical inclusions of composite materials. This is due to the smoothness of the filler surfaces and the lack of filler dissection in the model. Instead, the prediction of the strength of a finite element model of chaotically reinforced cylindrical inclusions of composite materials requires additional analysis. The matrix and the fibrous filler obviously have stress concentrators and are both subject to the difficulties of creating a reliable structural model.

Funder

Cultural and Educational Grant Agency of the Slovak Republic

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3