Nanoenergetic Composites with Fluoropolymers: Transition from Powders to Structures

Author:

Pisharath Sreekumar,Ong Yew JinORCID,Hng Huey HoonORCID

Abstract

Over the years, nanoenergetic materials have attracted enormous research interest due to their overall better combustion characteristics compared to their micron-sized counterparts. Aluminum, boron, and their respective alloys are the most extensively studied nanoenergetic materials. The majority of the research work related to this topic is confined to the respective powders. However, for practical applications, the powders need to be consolidated into reactive structures. Processing the nanoenergetic materials with polymeric binders to prepare structured composites is a possible route for the conversion of powders to structures. Most of the binders, including the energetic ones, when mixed with nanoenergetic materials even in small quantities, adversely affects the ignitability and combustion performance of the corresponding composites. The passivating effect induced by the polymeric binder is considered unfavorable for ignitability. Fluoropolymers, with their ability to induce pre-ignition reactions with the nascent oxide shell around aluminum and boron, are recognized to sustain the ignitability of the composites. Initial research efforts have been focused on surface functionalizing approaches using fluoropolymers to activate them further for energy release, and to improve the safety and storage properties. With the combined advent of more advanced chemistry and manufacturing techniques, fluoropolymers are recently being investigated as binders to process nanoenergetic materials to reactive structures. This review focuses on the major research developments in this area that have significantly assisted in the transitioning of nanoenergetic powders to structures using fluoropolymers as binders.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3