Development and Characterization of Yeast-Incorporated Antimicrobial Cellulose Biofilms for Edible Food Packaging Application

Author:

Atta Omar Mohammad,Manan Sehrish,Ahmed Abeer Ahmed QaedORCID,Awad Mohamed F.ORCID,Ul-Islam MazharORCID,Subhan Fazli,Ullah Muhammad WajidORCID,Yang Guang

Abstract

The unique properties and advantages of edible films over conventional food packaging have led the way to their extensive exploration in recent years. Moreover, the incorporation of bioactive components during their production has further enhanced the intrinsic features of packaging materials. This study was aimed to develop edible and bioactive food packaging films comprising yeast incorporated into bacterial cellulose (BC) in conjunction with carboxymethyl cellulose (CMC) and glycerol (Gly) to extend the shelf life of packaged food materials. First, yeast biomass and BC hydrogels were produced by Meyerozyma guilliermondii (MT502203.1) and Gluconacetobacter xylinus (ATCC53582), respectively, and then the films were developed ex situ by mixing 30 wt.% CMC, 30 wt.% Gly, 2 wt.% yeast dry biomass, and 2 wt.% BC slurry. FE-SEM observation showed the successful incorporation of Gly and yeast into the fibrous cellulose matrix. FTIR spectroscopy confirmed the development of composite films through chemical interaction between BC, CMC, Gly, and yeast. The developed BC/CMC/Gly/yeast composite films showed high water solubility (42.86%). The yeast-incorporated films showed antimicrobial activities against three microbial strains, including Escherichia coli, Pseudomonas aeruginosa, and Saccharomyces aureus, by producing clear inhibition zones of 16 mm, 10 mm, and 15 mm, respectively, after 24 h. Moreover, the films were non-toxic against NIH-3T3 fibroblast cells. Finally, the coating of oranges and tomatoes with BC/CMC/Gly/yeast composites enhanced the shelf life at different storage temperatures. The BC/CMC/Gly/yeast composite film-coated oranges and tomatoes demonstrated acceptable sensory features such as odor and color, not only at 6 °C but also at room temperature and further elevated temperatures at 30 °C and 40 °C for up to two weeks. The findings of this study indicate that the developed BC/CMC/Gly/yeast composite films could be used as edible packaging material with high nutritional value and distinctive properties related to the film component, which would provide protection to foods and extend their shelf life, and thus could find applications in the food industry.

Funder

National Natural Science Foundation of China

BRICS STI Framework Programme 3rd call 2019

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3