Abstract
Diseases have adverse effects on crop production and yield loss. Various diseases such as leaf rust, stem rust, and strip rust can affect yield quality and quantity for a studied area. In addition, manual wheat disease identification and interpretation is time-consuming and cumbersome. Currently, decisions related to plants mainly rely on the level of expertise in the domain. To resolve these challenges and to identify wheat disease as early as possible, we implemented different deep learning models such as Inceptionv3, Resnet50, and VGG16/19. This research was conducted in collaboration with Bishoftu Agricultural Research Institute, Ethiopia. Our main objective was to automate plant-disease identification using advanced deep learning approaches and image data. For the experiment, RGB image data were collected from the Bishoftu area. From the experimental results, the VGG19 model classified wheat disease with 99.38% accuracy.
Reference62 articles.
1. Review of Crop Yield Forecasting Methods and Early Warning Systems;Basso,2013
2. Forest resource management systems in Ethiopia;Eshetu;Int. J. Biodivers. Conserv.,2014
3. Wheat production and marketing in Ethiopia: Review study
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献