Wheat leaf disease classification using modified ResNet50 convolutional neural network model
Author:
Publisher
Springer Science and Business Media LLC
Link
https://link.springer.com/content/pdf/10.1007/s11042-023-18049-z.pdf
Reference51 articles.
1. Mertz O, Mbow C, Reenberg A, Diouf A (2009) Farmers’ perceptions of climate change and agricultural adaptation strategies in rural Sahel. Environ Manage 43(5):804–816. https://doi.org/10.1007/s00267-008-9197-0
2. Trivelli L, Apicella A, Chiarello F, Rana R, Fantoni G, Tarabella A (2019) From precision agriculture to Industry 4.0: unveiling technological connections in the agrifood sector. Br Food J 121(8):1730–1743. https://doi.org/10.1108/BFJ-11-2018-0747
3. Subeesh A, Mehta CR (2021) Automation and digitization of agriculture using artificial intelligence and internet of things. Artif Intell Agric 5:278–291. https://doi.org/10.1016/j.aiia.2021.11.004
4. Figueroa M, Hammond-Kosack KE, Solomon PS (2018) A review of wheat diseases—a field perspective. Mol Plant Pathol 19(6):1523–1536. https://doi.org/10.1111/mpp.12618
5. Noon SK, Amjad M, Qureshi MA, Mannan A (2020) Use of deep learning techniques for identification of plant leaf stresses: a review. Sustain Comput: Inform Syst 28:100443. https://doi.org/10.1016/j.suscom.2020.100443
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Lightweight convolutional neural network-based plant disease identification for protection and landscape design;Crop Protection;2024-10
2. From leaf to harvest: achieving sustainable agriculture through advanced disease prediction with DBN‐EKELM;Journal of the Science of Food and Agriculture;2024-06-26
3. Detecting fungi-affected multi-crop disease on heterogeneous region dataset using modified ResNeXt approach;Environmental Monitoring and Assessment;2024-06-11
4. An improved federated deep learning for plant leaf disease detection;Multimedia Tools and Applications;2024-03-13
5. A Comparative Analysis of Deep Learning based Classifiers for the Identification of Maize Rot Diseases;2024 1st International Conference on Cognitive, Green and Ubiquitous Computing (IC-CGU);2024-03-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3