From leaf to harvest: achieving sustainable agriculture through advanced disease prediction with DBNEKELM

Author:

Rajasekar Deepa1,Moorthy Vaishnavi2,Rajadurai Priscilla3,Ravikumar Sethuraman4ORCID

Affiliation:

1. Department of Information Technology St. Joseph's Institute of Technology Chennai India

2. Department of Networking and Communications, School of Computing SRM Institute of Science and Technology, Kattankulathur Campus Chennai India

3. Department of Artificial Intelligence and Data Science St Joseph's Institute of Technology Chennai India

4. Department of Computer Science and Engineering Faculty of Engineering and Technology, JAIN Deemed‐To‐Be University Bengaluru, Karnataka India

Abstract

AbstractBackgroundIn the agricultural sector, the early identification of plant diseases presents a pressing challenge. Throughout the growing season, plants remain vulnerable to an array of diseases. Failure to detect these diseases at their early stages can significantly compromise the overall yield, thereby reducing profitability for farmers. To address this issue, several researchers have introduced standard methods that leverage machine learning and deep learning techniques. However, many of these methods offer limited classification accuracy and often necessitate extensive training parameter adjustments.MethodThe objective of this study is to develop a new deep learning‐based technique for detecting and classifying plant diseases at earlier stages. Thus, this paper introduces a novel technique known as the deep belief network‐based enhanced kernel extreme learning machine (DBN‐EKELM) that identifies a disease automatically and performs effective classification. The initial phase involves data preprocessing to enhance quality of plant leaf images, facilitating the extraction of critical information. With the goal of achieving superior classification accuracy, this paper proposes the use of the DBN‐EKELM technique for optimal plant leaf disease detection. Given that KELM parameters are highly sensitive to minor variations, proper parameter tuning is essential and introduces a novel binary gaining sharing knowledge‐based optimization algorithm (NBGSK).ResultThe efficacy of the proposed DBN‐EKELM method is evaluated by comparing its performance with other conventional methods, considering various measures like accuracy, precision, specificity, sensitivity and F‐measure.ConclusionExperimental analyses demonstrate that the DBN‐EKELM technique achieves an impressive rate of approximately 98.2%, 97%, 98.1%, 97.4% as well as 97.8%, surpassing other standard methods. © 2024 Society of Chemical Industry.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3