Abstract
The development and manufacture of prosthetic limbs is one of the important tendencies of the development of medical techniques. Taking into account the development of modern electronic technology and automated systems and its mobility and compactness, the actual task is to create a prosthesis that will be close to a fully functioning human limb in its anthropomorphic properties and will be capable of reproducing its basic actions with a high accuracy. The paper analyzes the main directions in the development of a control system for electronic limb prostheses. The description and results of the practical implementation of a prototype of an anthropomorphic prosthetic arm and its control system are presented in the paper. We developed an anthropomorphic multi-finger artificial hand for utilization in robotic research and teaching applications. The designed robotic hand is a low-cost alternative to other known 3D printed robotic hands and has 21 degrees of freedom—4 degrees of freedom for each finger, 3 degrees for the thumb and 2 degrees responsible for the position of the robotic hand in space. The open-source mechanical design of the presented robotic arm has mass-dimensional and motor parameters close to the human hand, with the possibility of autonomous battery operation, the ability to connect different control systems, such as from a computer, an electroencephalograph, a touch glove.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献