A Comparative Study of SSA-BPNN, SSA-ENN, and SSA-SVR Models for Predicting the Thickness of an Excavation Damaged Zone around the Roadway in Rock

Author:

Zhao GuoyanORCID,Wang MengORCID,Liang Weizhang

Abstract

Due to the disturbance effect of excavation, the original stress is redistributed, resulting in an excavation damaged zone around the roadway. It is significant to predict the thickness of an excavation damaged zone because it directly affects the stability of roadways. This study used a sparrow search algorithm to improve a backpropagation neural network, and an Elman neural network and support vector regression models to predict the thickness of an excavation damaged zone. Firstly, 209 cases with four indicators were collected from 34 mines. Then, the sparrow search algorithm was used to optimize the parameters of the backpropagation neural network, Elman neural network, and support vector regression models. According to the optimal parameters, these three predictive models were established based on the training set (80% of the data). Finally, the test set (20% of the data) was used to verify the reliability of each model. The mean absolute error, coefficient of determination, Nash–Sutcliffe efficiency coefficient, mean absolute percentage error, Theil’s U value, root-mean-square error, and the sum of squares error were used to evaluate the predictive performance. The results showed that the sparrow search algorithm improved the predictive performance of the traditional backpropagation neural network, Elman neural network, and support vector regression models, and the sparrow search algorithm–backpropagation neural network model had the best comprehensive prediction performance. The mean absolute error, coefficient of determination, Nash–Sutcliffe efficiency coefficient, mean absolute percentage error, Theil’s U value, root-mean-square error, and sum of squares error of the sparrow search algorithm–backpropagation neural network model were 0.1246, 0.9277, −1.2331, 8.4127%, 0.0084, 0.1636, and 1.1241, respectively. The proposed model could provide a reliable reference for the thickness prediction of an excavation damaged zone, and was helpful in the risk management of roadway stability.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference71 articles.

1. Advances in theories and technologies for stability control of the loose zone of surrounding rock in deep roadways;Jing;J. Min. Safety Eng.,2020

2. The theory of supporting broken zone in surrounding rock;Dong;J. Univ. Sci. Technol.,1991

3. Dynamic and static analysis of mechanism of loosen zone in surrounding rock of tunnels;Chen;J. Geotech. Eng.,2011

4. Tunnel wall rock loose circle support theories;Dong;J. China Coal Soc.,1994

5. Support vector machine model of loose ring thickness prediction;Zhao;J. Guangxi Univ.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3