Slope Stability Prediction Using k-NN-Based Optimum-Path Forest Approach

Author:

Liu Leilei1,Zhao Guoyan1,Liang Weizhang1

Affiliation:

1. School of Resources and Safety Engineering, Central South University, Changsha 410083, China

Abstract

Slope instability can lead to catastrophic consequences. However, predicting slope stability effectively is still challenging because of the complex mechanisms and multiple influencing factors. In recent years, machine learning (ML) has received great attention in slope stability prediction due to its strong nonlinear prediction ability. In this study, an optimum-path forest algorithm based on k-nearest neighbor (OPFk-NN) was used to predict the stability of slopes. First, 404 historical slopes with failure risk were collected. Subsequently, the dataset was used to train and test the algorithm based on randomly divided training and test sets, respectively. The hyperparameter values were tuned by combining ten-fold cross-validation and grid search methods. Finally, the performance of the proposed approach was evaluated based on accuracy, F1-score, area under the curve (AUC), and computational burden. In addition, the prediction results were compared with the other six ML algorithms. The results showed that the OPFk-NN algorithm had a better performance, and the values of accuracy, F1-score, AUC, and computational burden were 0.901, 0.902, 0.901, and 0.957 s, respectively. Moreover, the failed slope cases can be accurately identified, which is highly critical in slope stability prediction. The slope angle had the most important influence on prediction results. Furthermore, the engineering application results showed that the overall predictive performance of the OPFk-NN model was consistent with the factor of safety value of engineering slopes. This study can provide valuable guidance for slope stability analysis and risk management.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3