Automatic Fingerprint Classification Using Deep Learning Technology (DeepFKTNet)

Author:

Saeed FahmanORCID,Hussain MuhammadORCID,Aboalsamh Hatim A.ORCID

Abstract

Fingerprints are gaining in popularity, and fingerprint datasets are becoming increasingly large. They are often captured utilizing a variety of sensors embedded in smart devices such as mobile phones and personal computers. One of the primary issues with fingerprint recognition systems is their high processing complexity, which is exacerbated when they are gathered using several sensors. One way to address this issue is to categorize fingerprints in a database to condense the search space. Deep learning is effective in designing robust fingerprint classification methods. However, designing the architecture of a CNN model is a laborious and time-consuming task. We proposed a technique for automatically determining the architecture of a CNN model adaptive to fingerprint classification; it automatically determines the number of filters and the layers using Fukunaga–Koontz transform and the ratio of the between-class scatter to within-class scatter. It helps to design lightweight CNN models, which are efficient and speed up the fingerprint recognition process. The method was evaluated two public-domain benchmark datasets FingerPass and FVC2004 benchmark datasets, which contain noisy, low-quality fingerprints obtained using live scan devices and cross-sensor fingerprints. The designed models outperform the well-known pre-trained models and the state-of-the-art fingerprint classification techniques.

Funder

NPST, King Saud University

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3