Enhanced fingerprint pattern classification: Integrating attention modules with lightweight deep learning models

Author:

Mukoya Esther1ORCID,Rimiru Richard1,Kimwele Michael1

Affiliation:

1. School of Computing and Information Technology Jomo Kenyatta University of Agriculture and Technology Nairobi Kenya

Abstract

AbstractLarge fingerprint databases can make the automated search process tedious and time‐consuming. Fingerprint pattern classification is a significant step in the identification system's complexity in terms of time and speed. Although several fingerprint algorithms have been developed for classification tasks, further improvements in performance and efficiency are still required. Most of the fingerprint algorithms use deep learning techniques. However, some deep learning techniques can be resource‐intensive and computationally expensive, while others can disregard the spatial relationships between the features used in classifying fingerprint patterns. This study proposes using lightweight deep learning models (i.e., MobileNet and EfficientNet‐B0) integrated with attention modules to classify fingerprint patterns. The two lightweight models are modified, yielding MobileNet+ and EfficientNet‐B0+ models. The lightweight deep learning models can help achieve optimal performance and reduce computational complexity. The attention modules focus on distinctive features for classification. Our proposed approach integrates four attention modules for fingerprint pattern classification into two lightweight deep learning models, that is, MobileNet+ and EfficientNet‐B0+. To evaluate our approach, we use two publicly available fingerprint datasets, that is, the NIST special database 301 dataset and the LivDet dataset. The evaluation results show that the EfficientNet‐B0+ model achieves the highest classification accuracy of 97% with only 854,086 training parameters. As a conclusion, we consider the training parameters small enough for the EfficientNet‐B0+ model to be deployed on low‐resource devices.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3