A Data-Driven Convolutional Neural Network Approach for Power Quality Disturbance Signal Classification (DeepPQDS-FKTNet)

Author:

Saeed Fahman1ORCID,Aldera Sultan1,Alkhatib Mohammad1,Al-Shamma’a Abdullrahman A.2,Hussein Farh Hassan M.2ORCID

Affiliation:

1. Computer Science Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia

2. Electrical Engineering Department, College of Engineering, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia

Abstract

Power quality disturbance (PQD) signal classification is crucial for the real-time monitoring of modern power grids, assuring safe and reliable operation and user safety. Traditional power quality disturbance signal classification approaches are sensitive to noise, feature selection, etc. This study introduces a novel approach utilizing a data-driven convolutional neural network (CNN) to improve the effectiveness of power quality disturbance signal classification. Deep learning has been successfully used in various fields of recognition, yielding promising outcomes. Deep learning is often characterized as a complex system, with its filters and layers being determined through empirical investigations. A deep learning model was developed for the purpose of classifying PQDs, with the aim of narrowing down the search for unidentified PQDs to a specific problem domain. This approach demonstrates a high level of efficiency in accelerating the process of recognizing PQDs among a vast database of PQDs. In order to automatically identify the number of filters and the number of layers in the model in a PQD dataset, the proposed model uses pyramidal clustering, the Fukunaga–Koontz transform, and the ratio of the between-class scatter to the within-class scatter. The suggested model was assessed using the synthetic dataset generated, with and without the presence of noise. The proposed models outperformed both well-known pre-trained models and state-of-the-art PQD classification techniques in terms of classification accuracy.

Funder

Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3