Forecast of Energy Consumption and Carbon Emissions in China’s Building Sector to 2060

Author:

Pu Xingfan,Yao JianORCID,Zheng Rongyue

Abstract

The goal of reaching the peak of carbon in the construction industry is urgent. However, the research on the feasibility of realizing this goal and the implementation of relevant policies in China is relatively superficial. In view of the historical data of energy consumption and building CO2 emission from 1995 to 2019, this paper establishes a BP neural network model for predicting building CO2 emissions. Moreover, the influencing factors, such as population, GDP, and total construction output, are introduced as the parameters in the model. Through the scenario analysis method explores the practical path to accomplish the peak of building CO2 emissions. When using traditional prediction methods to predict building carbon emissions, the long prediction cycle will increase the possibility of significant errors. Therefore, this paper constructs the calculation model of building carbon emission and forecasts the future carbon emission value through the BP neural network to avoid the error caused by the nonlinear relationship between influencing factors and predicted value. It will effectively predict the feasibility of the carbon peak and the carbon-neutral target set by government, and provide a useful predictive tool for adjusting the new energy structure and formulating related emission reduction policies.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference43 articles.

1. Impacts of 1.5 °C of Global Warming on Natural and Human Systems [EB/OL] https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15-Chapter3-Low-Res.pdf

2. World Energy Outlook 2019-Executive Summary [EB/OL] https://www.Iea.org/reports/world-energy-outlook-2019

3. China's energy and emissions outlook to 2050: Perspectives from bottom-up energy end-use model

4. Scenarios of energy efficiency and CO2 emissions reduction potential in the buildings sector in China to year 2050

5. Greenhouse gas emissions in building construction: A case study of One Peking in Hong Kong

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3