Abstract
The goal of reaching the peak of carbon in the construction industry is urgent. However, the research on the feasibility of realizing this goal and the implementation of relevant policies in China is relatively superficial. In view of the historical data of energy consumption and building CO2 emission from 1995 to 2019, this paper establishes a BP neural network model for predicting building CO2 emissions. Moreover, the influencing factors, such as population, GDP, and total construction output, are introduced as the parameters in the model. Through the scenario analysis method explores the practical path to accomplish the peak of building CO2 emissions. When using traditional prediction methods to predict building carbon emissions, the long prediction cycle will increase the possibility of significant errors. Therefore, this paper constructs the calculation model of building carbon emission and forecasts the future carbon emission value through the BP neural network to avoid the error caused by the nonlinear relationship between influencing factors and predicted value. It will effectively predict the feasibility of the carbon peak and the carbon-neutral target set by government, and provide a useful predictive tool for adjusting the new energy structure and formulating related emission reduction policies.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献