Data-Driven Golden Jackal Optimization–Long Short-Term Memory Short-Term Energy-Consumption Prediction and Optimization System

Author:

Yang Yongjie12ORCID,Li Yulong1,Cai Yan12,Tang Hui1,Xu Peng12

Affiliation:

1. School of Information Science and Technology, Nantong University, Nantong 226019, China

2. Nantong Research Institute for Advanced Communication Technologies, Nantong 226019, China

Abstract

In order to address the issues of significant energy and resource waste, low-energy management efficiency, and high building-maintenance costs in hot-summer and cold-winter regions of China, a research project was conducted on an office building located in Nantong. In this study, a data-driven golden jackal optimization (GJO)-based Long Short-Term Memory (LSTM) short-term energy-consumption prediction and optimization system is proposed. The system creates an equivalent model of the office building and employs the genetic algorithm tool Wallacei to automatically optimize and control the building’s air conditioning system, thereby achieving the objective of reducing energy consumption. To validate the authenticity of the optimization scheme, unoptimized building energy consumption was predicted using a data-driven short-term energy consumption-prediction model. The actual comparison data confirmed that the reduction in energy consumption resulted from implementing the air conditioning-optimization scheme rather than external factors. The optimized building can achieve an hourly energy saving rate of 6% to 9%, with an average daily energy-saving rate reaching 8%. The entire system, therefore, enables decision-makers to swiftly assess and validate the efficacy of energy consumption-optimization programs, thereby furnishing a scientific foundation for energy management and optimization in real-world buildings.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3