RBFA-Net: A Rotated Balanced Feature-Aligned Network for Rotated SAR Ship Detection and Classification

Author:

Shao Zikang,Zhang Xiaoling,Zhang Tianwen,Xu XiaowoORCID,Zeng Tianjiao

Abstract

Ship detection with rotated bounding boxes in synthetic aperture radar (SAR) images is now a hot spot. However, there are still some obstacles, such as multi-scale ships, misalignment between rotated anchors and features, and the opposite requirements for spatial sensitivity of regression tasks and classification tasks. In order to solve these problems, we propose a rotated balanced feature-aligned network (RBFA-Net) where three targeted networks are designed. They are, respectively, a balanced attention feature pyramid network (BAFPN), an anchor-guided feature alignment network (AFAN) and a rotational detection network (RDN). BAFPN is an improved FPN, with attention module for fusing and enhancing multi-level features, by which we can decrease the negative impact of multi-scale ship feature differences. In AFAN, we adopt an alignment convolution layer to adaptively align the convolution features according to rotated anchor boxes for solving the misalignment problem. In RDN, we propose a task decoupling module (TDM) to adjust the feature maps, respectively, for solving the conflict between the regression task and classification task. In addition, we adopt a balanced L1 loss to balance the classification loss and regression loss. Based on the SAR rotation ship detection dataset, we conduct extensive ablation experiments and compare our RBFA-Net with eight other state-of-the-art rotated detection networks. The experiment results show that among the eight state-of-the-art rotated detection networks, RBFA-Net makes a 7.19% improvement with mean average precision compared to the second-best network.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3