Author:
Zhang Tianwen,Zhang Xiaoling
Abstract
With the rise of artificial intelligence, many advanced Synthetic Aperture Radar (SAR) ship classifiers based on convolutional neural networks (CNNs) have achieved better accuracies than traditional hand-crafted feature ones. However, most existing CNN-based models uncritically abandon traditional hand-crafted features, and rely excessively on abstract ones of deep networks. This may be controversial, potentially creating challenges to improve classification performance further. Therefore, in view of this situation, this paper explores preliminarily the possibility of injection of traditional hand-crafted features into modern CNN-based models to further improve SAR ship classification accuracy. Specifically, we will—(1) illustrate what this injection technique is, (2) explain why it is needed, (3) discuss where it should be applied, and (4) describe how it is implemented. Experimental results on the two open three-category OpenSARShip-1.0 and seven-category FUSAR-Ship datasets indicate that it is effective to perform injection of traditional hand-crafted features into CNN-based models to improve classification accuracy. Notably, the maximum accuracy improvement reaches 6.75%. Hence, we hold the view that it is not advisable to abandon uncritically traditional hand-crafted features, because they can also play an important role in CNN-based models.
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献