A CFAR-Enhanced Ship Detector for SAR Images Based on YOLOv5s

Author:

Wen Xue1,Zhang Shaoming1,Wang Jianmei1,Yao Tangjun1,Tang Yan1ORCID

Affiliation:

1. College of Surveying and Geo-Informatics, Tongji University, Shanghai 200092, China

Abstract

Ship detection and recognition in Synthetic Aperture Radar (SAR) images are crucial for maritime surveillance and traffic management. Limited availability of high-quality datasets hinders in-depth exploration of ship features in complex SAR images. While most existing SAR ship research is primarily based on Convolutional Neural Networks (CNNs), and although deep learning advances SAR image interpretation, it often prioritizes recognition over computational efficiency and underutilizes SAR image prior information. Therefore, this paper proposes YOLOv5s-based ship detection in SAR images. Firstly, for comprehensive detection enhancement, we employ the lightweight YOLOv5s model as the baseline. Secondly, we introduce a sub-net into YOLOv5s, learning traditional features to augment ship feature representation of Constant False Alarm Rate (CFAR). Additionally, we attempt to incorporate frequency-domain information into the channel attention mechanism to further improve detection. Extensive experiments on the Ship Recognition and Detection Dataset (SRSDDv1.0) in complex SAR scenarios confirm our method’s 68.04% detection accuracy and 60.25% recall, with a compact 18.51 M model size. Our network surpasses peers in mAP, F1 score, model size, and inference speed, displaying robustness across diverse complex scenes.

Funder

Natural Science Foundation of China

Publisher

MDPI AG

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3