Depthwise Separable Convolution Neural Network for High-Speed SAR Ship Detection

Author:

Zhang ,Zhang ,Shi ,Wei

Abstract

As an active microwave imaging sensor for the high-resolution earth observation, synthetic aperture radar (SAR) has been extensively applied in military, agriculture, geology, ecology, oceanography, etc., due to its prominent advantages of all-weather and all-time working capacity. Especially, in the marine field, SAR can provide numerous high-quality services for fishery management, traffic control, sea-ice monitoring, marine environmental protection, etc. Among them, ship detection in SAR images has attracted more and more attention on account of the urgent requirements of maritime rescue and military strategy formulation. Nowadays, most researches are focusing on improving the ship detection accuracy, while the detection speed is frequently neglected, regardless of traditional feature extraction methods or modern deep learning (DL) methods. However, the high-speed SAR ship detection is of great practical value, because it can provide real-time maritime disaster rescue and emergency military planning. Therefore, in order to address this problem, we proposed a novel high-speed SAR ship detection approach by mainly using depthwise separable convolution neural network (DS-CNN). In this approach, we integrated multi-scale detection mechanism, concatenation mechanism and anchor box mechanism to establish a brand-new light-weight network architecture for the high-speed SAR ship detection. We used DS-CNN, which consists of a depthwise convolution (D-Conv2D) and a pointwise convolution (P-Conv2D), to substitute for the conventional convolution neural network (C-CNN). In this way, the number of network parameters gets obviously decreased, and the ship detection speed gets dramatically improved. We experimented on an open SAR ship detection dataset (SSDD) to validate the correctness and feasibility of the proposed method. To verify the strong migration capacity of our method, we also carried out actual ship detection on a wide-region large-size Sentinel-1 SAR image. Ultimately, under the same hardware platform with NVIDIA RTX2080Ti GPU, the experimental results indicated that the ship detection speed of our proposed method is faster than other methods, meanwhile the detection accuracy is only lightly sacrificed compared with the state-of-art object detectors. Our method has great application value in real-time maritime disaster rescue and emergency military planning.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3