Measurement of Sub-Surface Microstructures Based on a Developed Ultrasonic Atomic Force Microscopy

Author:

Wang Yuyang,Wu Chengjian,Tang Jinyan,Duan Mingyu,Chen Jian,Ju Bing-Feng,Chen Yuan-Liu

Abstract

Accurate and non-destructive technology for detection of subsurface defect has become a key requirement with the emergence of various ultra-precision machining technologies and the application of ultra-precision components. The combination of acoustic technique for sub-surface detection and atomic force microscopy (AFM) for measurement with high resolution is a potential method for studying the subsurface structure of workpiece. For this purpose, contact-resonance AFM (CR-AFM) is a typical technique. In this paper, a CR-AFM system with a different principle from commercially available instruments is set up and used for the detection of sub-surface Si samples with grating structures and covered by different thickness of highly oriented pyrolytic graphite (HOPG). The influence of subsurface burial depth on the detection capability is studied by simulations and experiments. The thickest HOPG film allowing for sub-surface measurement by the proposed method is verified to be about 30 μm, which is much larger than the feature size of the subsurface microstructure. The manuscript introduces the difference between this subsurface topography measurement principle and the commercially available AFM measurement principle, and analyzes its advantages and disadvantages. The experimental results demonstrates that the technique has the capability to reveal sub-surface microstructures with relatively large buried depth and is potential for engineering application in ultra-precision technologies.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3