Author:
Wang Yuyang,Wu Chengjian,Tang Jinyan,Duan Mingyu,Chen Jian,Ju Bing-Feng,Chen Yuan-Liu
Abstract
Accurate and non-destructive technology for detection of subsurface defect has become a key requirement with the emergence of various ultra-precision machining technologies and the application of ultra-precision components. The combination of acoustic technique for sub-surface detection and atomic force microscopy (AFM) for measurement with high resolution is a potential method for studying the subsurface structure of workpiece. For this purpose, contact-resonance AFM (CR-AFM) is a typical technique. In this paper, a CR-AFM system with a different principle from commercially available instruments is set up and used for the detection of sub-surface Si samples with grating structures and covered by different thickness of highly oriented pyrolytic graphite (HOPG). The influence of subsurface burial depth on the detection capability is studied by simulations and experiments. The thickest HOPG film allowing for sub-surface measurement by the proposed method is verified to be about 30 μm, which is much larger than the feature size of the subsurface microstructure. The manuscript introduces the difference between this subsurface topography measurement principle and the commercially available AFM measurement principle, and analyzes its advantages and disadvantages. The experimental results demonstrates that the technique has the capability to reveal sub-surface microstructures with relatively large buried depth and is potential for engineering application in ultra-precision technologies.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献