Improved sensitivity for subsurface imaging by contact resonance atomic force microscopy using Fano peaks

Author:

Wang Yuyang1ORCID,Duan Mingyu1ORCID,Chen Yuan-Liu1ORCID

Affiliation:

1. The State Key Lab of Fluid Power Transmission and Control, School of Mechanical Engineering, Zhejiang University , Hangzhou 310027, People’s Republic of China

Abstract

Subsurface detection using contact resonance atomic force microscopy (CR-AFM) has been well-documented and proven capable of nondestructively detecting subsurface defects at depths of hundreds of nanometers. In CR-AFM, the frequency of the contact resonance mode is often used as the actuating frequency of the probe. However, as many frequencies are available in the probe’s vibrational spectrum, each with a significant impact on the final measurement result, a focused study on frequency selection is necessary. This paper investigates contact resonance peaks through theoretical modeling and experimental verification. The peaks were categorized into two types based on their symmetry. Comparative studies were conducted on the traditionally used symmetric resonance peaks and the less-studied asymmetric resonance peaks. The results reveal the detection capability for subsurface measurements due to different peak selections, identifying the peak types most suitable for these measurements. This study demonstrates that using Fano peaks in CR-AFM can enhance subsurface imaging resolution and reduce surface damage, making it a valuable technique for detailed nanoscale analysis.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Zhejiang Provincial Key Research and Development Program of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3