A Novel Immersive Anatomy Education System (Anat_Hub): Redefining Blended Learning for the Musculoskeletal System

Author:

Boomgaard Ayesha,Fritz Kaylyn A.,Isafiade Omowunmi E.ORCID,Kotze Retha Christina M.,Ekpo OkobiORCID,Smith Marjorie,Gessler Tyler,Filton Kayleigh J.ORCID,Cupido Christiaan C.,Aden Bahija,Yokwe NtokozoORCID,Mayekiso Luyanda,Gxowa Siyamthanda,Levitt Annelize,Dlodlo Lilitha,Madushana Nosicelo,de Laroche Souvestre Desiré Laurent

Abstract

Immersive technologies are redefining ways of interacting with 3D objects and their environments. Moreover, efforts in blended learning have presented several advantages of incorporating educational technology into the learning space. The advances in educational technology have in turn helped to widen the choice of different pedagogies for improving learner engagement and levels of understanding. However, there is limited research in anatomy education that has considered the use and adoption of immersive technologies for the musculoskeletal system, despite its immense advantage. This research presents a practical immersive anatomy education system (coined Anat_Hub) developed using the agile scrum and participatory design method at a selected tertiary institution in Cape Town, South Africa, which promotes learner engagement through an asynchronous technological means using augmented reality (AR). The aim of the study was to develop an immersive AR mobile application that will assist learners and educators in studying and teaching the names, attachments, and actions of muscles of the human musculoskeletal system (upper and lower limbs). The Anat_Hub application offers a wide range of useful features for promoting active and self-regulated learning, such as 3D and AR modes, glossary, and quiz features. The application was tested with potential users, and on a variety of mobile device specifications. Very few volunteers have used AR prior to this study (13.2%). On a scale of 1 to 5, the majority of volunteers scored the application a 4 or 5. Overall, results and feedback obtained from users show that the proposed immersive anatomy system could effectively improve learner engagement and retention of anatomy concepts.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3