Trajectory Tracking Predictive Control for Unmanned Surface Vehicles with Improved Nonlinear Disturbance Observer

Author:

Fu Huixuan1,Yao Wenjing1,Cajo Ricardo2ORCID,Zhao Shiquan1ORCID

Affiliation:

1. College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China

2. Facultad de Ingeniería en Electricidad y Computación, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil 090150, Ecuador

Abstract

The motion of unmanned surface vehicles (USVs) is frequently disturbed by ocean wind, waves, and currents. A poorly designed controller will cause failures and safety problems during actual navigation. To obtain a satisfactory motion control performance for the USVs, a model predictive control (MPC) method based on an improved Nonlinear Disturbance Observer (NDO) is proposed. First, the USV model is approximately linearized and MPC is designed for the multivariable system with constraints. To compensate for the influence of disturbances, an improved NDO is designed where the calculation time for MPC is reduced. Finally, comparison simulations are conducted between MPC with the original NDO and MPC with an improved NDO, and the results show that they have similar performances to the USVs. However, the proposed method has fewer parameters that need to be tuned and is much more time-saving compared to MPC with a traditional NDO.

Funder

National Natural Science Foundation of China

Innovative Research Foundation of Ship General Performance

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3