Sparsity Regularization-Based Real-Time Target Recognition for Side Scan Sonar with Embedded GPU

Author:

Li Zhuoyi12,Chen Deshan34,Yip Tsz Leung2ORCID,Zhang Jinfen34

Affiliation:

1. School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China

2. Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University, Hong Kong 999077, China

3. Intelligent Transport Systems Research Center, Wuhan University of Technology, Wuhan 430063, China

4. National Engineering Research Center Water Transport Safety (WTSC), Wuhan 430063, China

Abstract

Side Scan Sonar (SSS) is widely used to search for seabed objects such as ships and wrecked aircraft due to its high-imaging-resolution and large planar scans. SSS requires an automatic real-time target recognition system to enhance search and rescue efficiency. In this paper, a novel target recognition method for SSS images in varied underwater environment, you look only once (YOLO)-slimming, based on convolutional a neural network (CNN) is proposed. The method introduces efficient feature encoders that strengthen the representation of feature maps. Channel-level sparsity regularization in model training is performed to speed up the inference performance. To overcome the scarcity of SSS images, a sonar image simulation method is proposed based on deep style transfer (ST). The performance on the SSS image dataset shows that it can reduce calculations and improves the inference speed with a mean average precision (mAP) of 95.3 and at least 45 frames per second (FPS) on an embedded Graphics Processing Unit (GPU). This proves its feasibility in practical application and has the potential to formulate an image-based real-time underwater target recognition system.

Funder

National Key R&D Program of China

National Nature Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Large video processing using GPU programming;2023 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS);2023-03-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3