Underwater Side-Scan Sonar Target Detection: YOLOv7 Model Combined with Attention Mechanism and Scaling Factor

Author:

Wen Xin1ORCID,Wang Jian2,Cheng Chensheng1,Zhang Feihu1ORCID,Pan Guang1

Affiliation:

1. School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China

2. Marine Design & Research Institute of China, Shanghai 200011, China

Abstract

Side-scan sonar plays a crucial role in underwater exploration, and the autonomous detection of side-scan sonar images is vital for detecting unknown underwater environments. However, due to the complexity of the underwater environment, the presence of a few highlighted areas on the targets, blurred feature details, and difficulty in collecting data from side-scan sonar, achieving high-precision autonomous target recognition in side-scan sonar images is challenging. This article addresses this problem by improving the You Only Look Once v7 (YOLOv7) model to achieve high-precision object detection in side-scan sonar images. Firstly, given that side-scan sonar images contain large areas of irrelevant information, this paper introduces the Swin-Transformer for dynamic attention and global modeling, which enhances the model’s focus on the target regions. Secondly, the Convolutional Block Attention Module (CBAM) is utilized to further improve feature representation and enhance the neural network model’s accuracy. Lastly, to address the uncertainty of geometric features in side-scan sonar target features, this paper innovatively incorporates a feature scaling factor into the YOLOv7 model. The experiment initially verified the necessity of attention mechanisms in the public dataset. Subsequently, experiments on our side-scan sonar (SSS) image dataset show that the improved YOLOv7 model has 87.9% and 49.23% in its average accuracy (mAP0.5) and (mAP0.5:0.95), respectively. These results are 9.28% and 8.41% higher than the YOLOv7 model. The improved YOLOv7 algorithm proposed in this paper has great potential for object detection and the recognition of side-scan sonar images.

Funder

National Key R&D Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3