Rooftop PV: Potential and Impacts in a Complex Territory

Author:

Bernasconi DianaORCID,Guariso GiorgioORCID

Abstract

When developing a sustainability plan in a complex and heavily urbanized territory, one of the most relevant options available is installing rooftop photovoltaic (PV) panels. Thus, it is essential to determine the amount of available surface and the potential impact of such installations on the energy and emission budget of the area. Instead of processing remotely sensed imagery, which is a long process and does not allow considering the buildings’ ownership, this study develops an approach based on a cluster analysis of the urban/morphological characteristics of the municipalities. Once a clear group diversification is obtained, the roof surface of the center of gravity of each cluster is extrapolated to all similar settlements. This, together with the information of local solar irradiation, allowed us to compute each cluster’s potential solar energy production and its capability to respond to the local energy demand, a key parameter to decide about the possibility of a local smart electricity network. Finally, the emissions avoided thanks to solar PV development are computed in terms of carbon dioxide and other relevant pollutants. This approach is applied to the residential rooftop of Lombardy, a Northern Italy region with a wide variety of urban morphologies and landscapes. The potential production of rooftop PV exceeds the estimated electricity consumption of residential buildings and would allow sparing almost 4 M ton of CO2 equivalent or 5% of the overall regional emissions.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference53 articles.

1. Summary for Policymakers. Global Warming of 1.5 °C,2018

2. EU Energy in Figures: Statistical Pocketbook 2018,2018

3. Exponential Roadmap 1.5. Future Earth;Falk,2019

4. World Urbanization Prospect: The 2014 Revision,2014

5. Cities and Climate Change: Policy Directions,2011

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3