Application of Satellite Data for Estimating Rooftop Solar Photovoltaic Potential

Author:

Sander Leon1ORCID,Schindler Dirk1ORCID,Jung Christopher1ORCID

Affiliation:

1. Chair of Environmental Meteorology, University of Freiburg, Werthmannstrasse 10, 79085 Freiburg, Germany

Abstract

Rooftop solar photovoltaics can significantly contribute to global energy transitions by providing clean, decentralized energy without the need for new land, thereby avoiding land-use conflicts. It serves as a valuable complement to other renewable-energy sources and is expected to play a crucial role in future electricity systems. Due to the spatiotemporal variability in the solar radiation on roof surfaces, it is essential to determine the potentials of the rooftop photovoltaics and its variations in specific regions. In Germany, this potential was assessed in 5 km × 5 km zones, as well as at the federal-state and national levels. High-quality satellite and reanalysis data were used to determine the power output of the solar photovoltaics. Additionally, high-resolution (2 m × 2 m) European Settlement Map data, calibrated with solar cadastre data, were utilized to evaluate different scenarios. The results show that the potential is concentrated in larger urban areas and the southwestern part of Germany due to the availability of rooftop space and solar radiation. Overall, the national rooftop areas are substantial across all scenarios, ranging from 2100 to 4500 km2. The applied methods and scenarios provide a straightforward way to reveal the spatiotemporal variability and define realistic ranges of the solar photovoltaic potential without requiring detailed information about each building. However, assessing the rooftop photovoltaic potential remains challenging and uncertain due to the lack of large-scale, high-resolution data on building characteristics and the complexity of the solar radiation distribution in urban environments.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3