Real-Time Scheduling of Pumps in Water Distribution Systems Based on Exploration-Enhanced Deep Reinforcement Learning

Author:

Hu Shiyuan1,Gao Jinliang1ORCID,Zhong Dan1,Wu Rui2,Liu Luming3

Affiliation:

1. School of Environment, Harbin Institute of Technology, Harbin 150090, China

2. Guangdong Yuehai Water Investment Co., Ltd., Shenzhen 518021, China

3. National Engineering Research Center of Urban Water Resources Co., Ltd., Harbin Institute of Technology, Harbin 150090, China

Abstract

Effective ways to optimise real-time pump scheduling to maximise energy efficiency are being sought to meet the challenges in the energy market. However, the considerable number of evaluations of popular optimisation methods based on metaheuristics cause significant delays for real-time pump scheduling, and the simplification of traditional deterministic methods may introduce bias towards the optimal solutions. To address these limitations, an exploration-enhanced deep reinforcement learning (DRL) framework is proposed to address real-time pump scheduling problems in water distribution systems. The experimental results indicate that E-PPO can learn suboptimal scheduling policies for various demand distributions and can control the application time to 0.42 s by transferring the online computation-intensive optimisation task offline. Furthermore, a form of penalty of the tank level was found that can reduce energy costs by up to 11.14% without sacrificing the water level in the long term. Following the DRL framework, the proposed method makes it possible to schedule pumps in a more agile way as a timely response to changing water demand while still controlling the energy cost and level of tanks.

Funder

the National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Networks and Communications,Modeling and Simulation,Control and Systems Engineering,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3