Research on low-energy consumption automatic real-time regulation of cascade gates and pumps in open-canal based on reinforcement learning

Author:

Gan Tian12,Jiang Yunzhong12,Zhao Hongli12,He Junyan12,Duan Hao12

Affiliation:

1. a State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100048, China

2. b Key Laboratory of Digital Twin Watershed, Ministry of Water Resources, Beijing 100048, China

Abstract

ABSTRACT Cascade gates and pumps are common hydraulic structures in the open-canal section of water transfer projects, characterized by high energy consumption and substantial costs, making it challenging to regulate. By implementing cascade gates regulation to control the hydraulic process, lift distribution of pump stations can be optimized, thus enhancing operational efficiency and reducing energy consumption. However, the selection of control models and parameter optimization is difficult because hydraulic processes are nonlinear, high-dimensional, large hysteresis, strong coupling, and time-varying. This study considers minimum energy consumption of pump stations as the regulation objective and employs the reinforcement learning (RL) algorithm for optimization regulation (OR) within a typical canal section of the Jiaodong Water Transfer Project. Our results demonstrate that after regulating, OR can precisely control the water level to achieve the high efficiency lift interval of pump station, enhancing efficiency by 4.12–6.02% compared to previous operation. Moreover, using optimized hyperparameters group, the RL model proves robust under different work conditions. The proposed method is suitable for complex hydraulic processes, highlighting its potential to support more effective decision-making in water resources regulation.

Funder

National Natural Science Foundation of China

Shandong Province Water Diversion Project Operation and Maintenance Center Cooperation Project

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3