Comparison of On-Policy Deep Reinforcement Learning A2C with Off-Policy DQN in Irrigation Optimization: A Case Study at a Site in Portugal

Author:

Alibabaei KhadijehORCID,Gaspar Pedro D.ORCID,Assunção EduardoORCID,Alirezazadeh SaeidORCID,Lima Tânia M.ORCID,Soares Vasco N. G. J.ORCID,Caldeira João M. L. P.ORCID

Abstract

Precision irrigation and optimization of water use have become essential factors in agriculture because water is critical for crop growth. The proper management of an irrigation system should enable the farmer to use water efficiently to increase productivity, reduce production costs, and maximize the return on investment. Efficient water application techniques are essential prerequisites for sustainable agricultural development based on the conservation of water resources and preservation of the environment. In a previous work, an off-policy deep reinforcement learning model, Deep Q-Network, was implemented to optimize irrigation. The performance of the model was tested for tomato crop at a site in Portugal. In this paper, an on-policy model, Advantage Actor–Critic, is implemented to compare irrigation scheduling with Deep Q-Network for the same tomato crop. The results show that the on-policy model Advantage Actor–Critic reduced water consumption by 20% compared to Deep Q-Network with a slight change in the net reward. These models can be developed to be applied to other cultures with high production in Portugal, such as fruit, cereals, and wine, which also have large water requirements.

Funder

Fundação para a Ciência e Tecnologia

European Regional Development Fund

Publisher

MDPI AG

Subject

Computer Networks and Communications,Human-Computer Interaction

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3