Modeling a Carbon-Efficient Road–Rail Intermodal Routing Problem with Soft Time Windows in a Time-Dependent and Fuzzy Environment by Chance-Constrained Programming

Author:

Sun Yan1ORCID,Sun Guohua1,Huang Baoliang2,Ge Jie3

Affiliation:

1. School of Management Science and Engineering, Shandong University of Finance and Economics, Jinan 250014, China

2. School of International Trade and Economics, Shandong University of Finance and Economics, Jinan 250014, China

3. SDU-ANU Joint Science College, Shandong University, Weihai 264209, China

Abstract

This study explores a road–rail intermodal routing problem. To improve the carbon efficiency of transportation, reducing CO2 emissions is considered by the routing. Soft time windows are incorporated into the routing to optimize the timeliness of the first-mile pickup and last-mile delivery services in intermodal transportation. The routing is further modeled in a time-dependent and fuzzy environment where the average truck speeds of the road depend on the truck departure times and are simultaneously considered fuzzy along with rail capacities. The fuzzy truck speed leads to the fuzziness of three aspects, including speed-dependent CO2 emissions of the road, a timetable-constrained transfer process from road to rail, and delivery time window violation. This study formulates the routing problem under the above considerations and carbon tax regulation as a combination of transportation path planning problem and truck departure time and speed matching problem. A fuzzy nonlinear optimization model is then established for the proposed routing problem. Furthermore, chance-constrained programming with general fuzzy measure is used to conduct the defuzzification of the model to make the problem solvable, and linearization techniques are adopted to linearize the model to enhance the efficiency of problem-solving. Finally, this study presents an empirical case to demonstrate the effectiveness of the designed approach. This case study evaluates the performance of carbon tax regulation by comparing it with multi-objective optimization. It also focuses on sensitivity analysis to discuss the influence of the optimistic–pessimistic parameter and confidence level on the optimization results. Several managerial insights are revealed based on the case study.

Funder

Shandong Provincial Natural Science Foundation of China

University-Industry Collaborative Education Program of the Ministry of Education of China

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Networks and Communications,Modeling and Simulation,Control and Systems Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3