Chance-Constrained Optimization for a Green Multimodal Routing Problem with Soft Time Window under Twofold Uncertainty

Author:

Li Xinya1,Sun Yan2ORCID,Qi Jinfeng1,Wang Danzhu3

Affiliation:

1. Institute of Technology, Shandong Open University, Jinan 250010, China

2. School of Management Science and Engineering, Shandong University of Finance and Economics, Jinan 250014, China

3. Transportation & Economics Research Institute, China Academy of Railway Sciences Corporation Limited, Beijing 100081, China

Abstract

This study investigates a green multimodal routing problem with soft time window. The objective of routing is to minimize the total costs of accomplishing the multimodal transportation of a batch of goods. To improve the feasibility of optimization, this study formulates the routing problem in an uncertain environment where the capacities and carbon emission factors of the travel process and the transfer process in the multimodal network are considered fuzzy. Taking triangular fuzzy numbers to describe the uncertainty, this study proposes a fuzzy nonlinear programming model to deal with the specific routing problem. To make the problem solvable, this study adopts the fuzzy chance-constrained programming approach based on the possibility measure to remove the fuzziness of the proposed model. Furthermore, we use linear inequality constraints to reformulate the nonlinear equality constraints represented by the continuous piecewise linear functions and realize the linearization of the nonlinear programming model to improve the computational efficiency of problem solving. After model processing, we can utilize mathematical programming software to run exact solution algorithms to solve the specific routing problem. A numerical experiment is given to show the feasibility of the proposed model. The sensitivity analysis of the numerical experiment further clarifies how improving the confidence level of the chance constraints to enhance the possibility that the multimodal route planned in advance satisfies the real-time capacity constraint in the actual transportation, i.e., the reliability of the routing, increases both the total costs and carbon emissions of the route. The numerical experiment also finds that charging carbon emissions is not absolutely effective in emission reduction. In this condition, bi-objective analysis indicates the conflicting relationship between lowering transportation activity costs and reducing carbon emissions in routing optimization. The sensitivity of the Pareto solutions concerning the confidence level reveals that reliability, economy, and environmental sustainability are in conflict with each other. Based on the findings of this study, the customer and the multimodal transport operator can organize efficient multimodal transportation, balancing the above objectives using the proposed model.

Funder

Shandong Provincial Natural Science Foundation of China

University-Industry Collaborative Education Program of the Ministry of Education of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3