Solving a Multimodal Routing Problem with Pickup and Delivery Time Windows under LR Triangular Fuzzy Capacity Constraints

Author:

Ge Jie1,Sun Yan2ORCID

Affiliation:

1. SDU-ANU Joint Science College, Shandong University, Weihai 264209, China

2. School of Management Science and Engineering, Shandong University of Finance and Economics, Jinan 250014, China

Abstract

This study models a container routing problem using multimodal transportation to improve its economy, timeliness, and reliability. Pickup and delivery time windows are simultaneously formulated in optimization to provide the shipper and the receiver with time-efficient services, in which early pickup and delayed delivery can be avoided, and nonlinear storage periods at the origin and the destination can be minimized. Furthermore, the capacity uncertainty of the multimodal network is incorporated into the advanced routing to enhance its reliability in practical transportation. The LR triangular fuzzy number is adopted to model the capacity uncertainty, in which its spread ratio is defined to measure the uncertainty level of the fuzzy capacity. Due to the nonlinearity introduced by the time windows and the fuzziness from the network capacity, this study establishes a fuzzy nonlinear optimization model for optimization problem. A chance-constrained linear reformulation equivalent to the proposed model is then generated based on the credibility measure, which makes the global optimum solution attainable by using Lingo software. A numerical case verification demonstrates that the proposed model can effectively solve the problem. The case analysis points out that the formulation of pickup and delivery time windows can improve the timeliness of the entire transportation process and help to achieve on-time transportation. Furthermore, improving the confidence level and the uncertainty level increases the total costs of the optimal route. Therefore, the shipper and the receiver must prepare more transportation budget to improve reliability and address the increasing uncertainty level. Further analysis draws some insights to help the shipper, receiver, and multimodal transport operator to organize a reliable and cost-efficient multimodal transportation under capacity uncertainty through confidence level balance and transportation service and transfer service selection.

Funder

Shandong Provincial Natural Science Foundation of China

University–Industry Collaborative Education Program of the Ministry of Education of China

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3