Condition-Based Maintenance for Normal Behaviour Characterisation of Railway Car-Body Acceleration Applying Neural Networks

Author:

Martínez-Llop Pablo GarridoORCID,Sanz Bobi Juan de DiosORCID,Solano Jiménez Álvaro,Gutiérrez Sánchez Jorge

Abstract

Recently, passenger comfort and user experience are becoming increasingly relevant for the railway operators and, therefore, for railway manufacturers as well. The main reason for this to happen is that comfort is a clear differential value considered by passengers as final customers. Passengers’ comfort is directly related to the accelerations received through the car-body of the train. For this reason, suspension and damping components must be maintained in perfect condition, assuring high levels of comfort quality. An early detection of any potential failure in these systems derives in a better maintenance inspections’ planification and in a more sustainable approach to the whole train maintenance strategy. In this paper, an optimized model based on neural networks is trained in order to predict lateral car-body accelerations. Comparing these predictions to the values measured on the train, a normal characterisation of the lateral dynamic behaviour can be determined. Any deviation from this normal characterisation will imply a comfort loss or a potential degradation of the suspension and damping components. This model has been trained with a dataset from a specific train unit, containing variables recorded every second during the year 2017, including lateral and vertical car-body accelerations, among others. A minimum average error of 0.034 m/s2 is obtained in the prediction of lateral car-body accelerations. This means that the average error is approximately 2.27% of the typical maximum estimated values for accelerations in vehicle body reflected in the EN14363 for the passenger coaches (1.5 m/s2). Thus, a successful model is achieved. In addition, the model is evaluated based on a real situation in which a passenger noticed a lack of comfort, achieving excellent results in the detection of atypical accelerations. Therefore, as it is possible to measure acceleration deviations from the standard behaviour causing lack of comfort in passengers, an alert can be sent to the operator or the maintainer for a non-programmed intervention at depot (predictive maintenance) or on board (prescriptive maintenance). As a result, a condition-based maintenance (CBM) methodology is proposed to avoid comfort degradation that could end in passenger complaints or speed limitation due to safety reasons for excessive acceleration. This methodology highlights a sustainable maintenance concept and an energy efficiency strategy.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference25 articles.

1. DIN EN 14363:2016-10,2016

2. Modelo de los Efectos no Lineales de Amortiguadores Transversales en Bogies Ferroviarios;Garrido,2016

3. COMPRAIL: Safety Concept of Railway Signalling Based on Galileo Safety-of-Life Service;Filip,2008

4. Damage Detection of Steel Girder Railway Bridges Utilizing Operational Vibration Response;Azim;Struct. Control Health Monit.,2019

5. A spatial coupling model to study dynamic performance of pantograph-catenary with vehicle-track excitation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3