Abstract
Recently, passenger comfort and user experience are becoming increasingly relevant for the railway operators and, therefore, for railway manufacturers as well. The main reason for this to happen is that comfort is a clear differential value considered by passengers as final customers. Passengers’ comfort is directly related to the accelerations received through the car-body of the train. For this reason, suspension and damping components must be maintained in perfect condition, assuring high levels of comfort quality. An early detection of any potential failure in these systems derives in a better maintenance inspections’ planification and in a more sustainable approach to the whole train maintenance strategy. In this paper, an optimized model based on neural networks is trained in order to predict lateral car-body accelerations. Comparing these predictions to the values measured on the train, a normal characterisation of the lateral dynamic behaviour can be determined. Any deviation from this normal characterisation will imply a comfort loss or a potential degradation of the suspension and damping components. This model has been trained with a dataset from a specific train unit, containing variables recorded every second during the year 2017, including lateral and vertical car-body accelerations, among others. A minimum average error of 0.034 m/s2 is obtained in the prediction of lateral car-body accelerations. This means that the average error is approximately 2.27% of the typical maximum estimated values for accelerations in vehicle body reflected in the EN14363 for the passenger coaches (1.5 m/s2). Thus, a successful model is achieved. In addition, the model is evaluated based on a real situation in which a passenger noticed a lack of comfort, achieving excellent results in the detection of atypical accelerations. Therefore, as it is possible to measure acceleration deviations from the standard behaviour causing lack of comfort in passengers, an alert can be sent to the operator or the maintainer for a non-programmed intervention at depot (predictive maintenance) or on board (prescriptive maintenance). As a result, a condition-based maintenance (CBM) methodology is proposed to avoid comfort degradation that could end in passenger complaints or speed limitation due to safety reasons for excessive acceleration. This methodology highlights a sustainable maintenance concept and an energy efficiency strategy.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Reference25 articles.
1. DIN EN 14363:2016-10,2016
2. Modelo de los Efectos no Lineales de Amortiguadores Transversales en Bogies Ferroviarios;Garrido,2016
3. COMPRAIL: Safety Concept of Railway Signalling Based on Galileo Safety-of-Life Service;Filip,2008
4. Damage Detection of Steel Girder Railway Bridges Utilizing Operational Vibration Response;Azim;Struct. Control Health Monit.,2019
5. A spatial coupling model to study dynamic performance of pantograph-catenary with vehicle-track excitation
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献