Coupled and Decoupled Force/Motion Controllers for an Underwater Vehicle-Manipulator System

Author:

Barbalata Corina,Dunnigan Matthew,Petillot YvanORCID

Abstract

Autonomous interaction with the underwater environment has increased the interest of scientists in the study of control structures for lightweight underwater vehicle-manipulator systems. This paper presents an essential comparison between two different strategies of designing control laws for a lightweight underwater vehicle-manipulator system. The first strategy aims to separately control the vehicle and the manipulator and hereafter is referred to as the decoupled approach. The second method, the coupled approach, proposes to control the system at the operational space level, treating the lightweight underwater vehicle-manipulator system as a single system. Both strategies use a parallel position/force control structure with sliding mode controllers and incorporate the mathematical model of the system. It is demonstrated that both methods are able to handle this highly non-linear system and compensate for the coupling effects between the vehicle and the manipulator. The results demonstrate the validity of the two different control strategies when the goal is located at various positions, as well as the reliable behaviour of the system when different environment stiffnesses are considered.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3