Bioactive Compounds from an Endophytic Pezicula sp. Showing Antagonistic Effects against the Ash Dieback Pathogen

Author:

Demir Özge1,Zeng Haoxuan1,Schulz Barbara2ORCID,Schrey Hedda12,Steinert Michael2ORCID,Stadler Marc12ORCID,Surup Frank12ORCID

Affiliation:

1. Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany

2. Institute of Microbiology, Technical University of Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany

Abstract

A fungal endophyte originating from the Canary Islands was identified as a potent antagonist against the fungal phytopathogen Hymenoscyphus fraxineus, which causes the devastating ash dieback disease. This endophyte was tentatively identified as Pezicula cf. ericae, using molecular barcoding. Isolation of secondary metabolites by preparative high-performance liquid chromatography (HPLC) yielded the known compounds CJ-17,572 (1), mycorrhizin A (3) and cryptosporioptides A–C (4–6), besides a new N-acetylated dihydroxyphenylalanin derivative 2, named peziculastatin. Planar structures were elucidated by NMR and HRMS data, while the relative stereochemistry of 2 was assigned by H,H and C,H coupling constants. The assignment of the unknown stereochemistry of CJ-17,572 (1) was hampered by the broadening of NMR signals. Nevertheless, after semisynthetic conversion of 1 into its methyl derivatives 7 and 8, presumably preventing tautomeric effects, the relative configuration could be assigned, whereas comparison of ECD data to those of related compounds determined the absolute configuration. Metabolites 1 and 3 showed significant antifungal effects in vitro against H. fraxineus. Furthermore, 4–6 exhibited significant dispersive effects on preformed biofilms of S. aureus at concentrations up to 2 µg/mL, while the biofilm formation of C. albicans was also inhibited. Thus, cryptosporioptides might constitute a potential source for the development of novel antibiofilm agents.

Funder

Waldklimafonds (WKF) of the Fachagentur Nachwachsende Rohstoffe e.V.

Republic of Türkiye Ministry of National Education

“Drug Discovery and Cheminformatics for New Anti-Infectives (iCA)” program

Ministry for Science & Culture of the German State of Lower Saxony

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3