Strong antagonism of an endophyte of Fraxinus excelsior towards the ash dieback pathogen, Hymenoscyphus fraxineus , is mediated by the antifungal secondary metabolite PF1140

Author:

Demir Özge12,Schulz Barbara2ORCID,Rabsch Laura2,Steinert Michael2ORCID,Surup Frank12ORCID

Affiliation:

1. Department of Microbial Drugs, Helmholtz Centre for Infection Research, Braunschweig, Germany

2. Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany

Abstract

ABSTRACT Ash dieback, caused by the fungal pathogen Hymenoscyphus fraxineus (Helotiales, Ascomycota) , is threatening the existence of the European ash, Fraxineus excelsior . During our search for biological control agents for this devastating disease, endophytic fungi were isolated from healthy plant tissues and co-cultivated with H. fraxineus to assess their antagonistic potential. Among the strains screened, Penicillium cf. manginii DSM 104493 most strongly inhibited the pathogen. Initially , DSM 104493 showed promise in planta as a biocontrol agent. Inoculation of DSM 104493 into axenically cultured ash seedlings greatly decreased the development of disease symptoms in seedlings infected with H. fraxineus . The fungus was thus cultivated on a larger scale in order to obtain sufficient material to identify active metabolites that accounted for the antibiosis observed in dual culture. We isolated PF1140 (1) and identified it as the main active compound in the course of a bioassay-guided isolation strategy. Furthermore, its derivative 2, the mycotoxin citreoviridin (3), three tetramic acids of the vancouverone type (4–6), and penidiamide (7) were isolated by preparative chromatography. The structures were elucidated mainly by NMR spectroscopy and high-resolution mass spectrometry (HRMS), of which compounds 2 and 6 represent novel natural products. Of the compounds tested, not only PF1140 (1) strongly inhibited H. fraxineus in an agar diffusion assay but also showed phytotoxic effects in a leaf puncture assay. Unfortunately, both the latent virulent attributes of DSM 104493 observed subsequent to these experiments in planta and the production of mycotoxins exclude strain Penicillium cf. manginii DSM 104493 from further development as a safe biocontrol agent. IMPORTANCE Environmentally friendly measures are urgently needed to control the causative agent of ash dieback, Hymenoscyphus fraxineus . Herein, we show that the endophyte DSM 104493 exhibits protective effects in vitro and in planta . We traced the activity of DSM 104493 to the antifungal natural product PF1140, which unfortunately also showed phytotoxic effects. Our results have important implications for understanding plant-fungal interactions mediated by secondary metabolites, not only in the context of ash dieback but also generally in plant-microbial interactions.

Funder

Fachagentur Nachwachsende Rohstoffe

Republic of Türkiye

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3