Fungi Detected in the Previous Year’s Leaf Petioles of Fraxinus excelsior and Their Antagonistic Potential against Hymenoscyphus fraxineus

Author:

Kowalski Tadeusz,Bilański PiotrORCID

Abstract

Studies on fungal communities in the previous year’s leaf petioles of Fraxinus excelsior found in litter in five ash stands in southern Poland were made in 2017. Fungi were identified on the basis of isolation from 300 surface sterilized leaf petioles and by in situ inventory of fruit bodies (on 600 petioles, in spring and autumn). Identification was based on morphology of colonies and fruit bodies, and sequencing of ITS region of the rRNA gene cluster. In total, 2832 isolates from 117 taxa (Ascomycota—100; Basidiomycota—15; Mucoromycota—2 taxa) were obtained with the isolation method. The most frequent taxa (with frequency >10%) were: Nemania serpens, Hymenoscyphus fraxineus, Alternaria sp. 1, Boeremia sp., Helotiales sp. 1, Epicoccum nigrum, Venturia fraxini, Fusarium sp., Fusarium lateritium, Nemania diffusa, Typhula sp. 2 (in descending order). In total, 45 taxa were detected with the in situ inventory method. Eleven taxa were classified as dominant: Hymenoscyphus fraxineus, Venturia fraxini, Leptosphaeria sp. 2, Cyathicula fraxinophila, Typhula sp. 2, Hypoderma rubi, Pyrenopeziza petiolaris, Cyathicula coronata, Hymenoscyphus scutula, Leptosphaeria sclerotioides and Hymenoscyphus caudatus. Among 202 leaf petioles colonized by H. fraxineus, 177 petioles also showed fructification of 26 other fungi. All the isolated saprotrophs were tested in dual-culture assay for antagonism to two strains of H. fraxineus. Three interaction types were observed: type A, mutual direct contact, when the two fungi meet along the contact line (occurred with 43.3% of test fungi); type B, with inhibition zone between colonies (with 46.9% of test fungi); type C, when the test fungus overgrows the colony of H. fraxineus (with 9.8% of test fungi). The possible contribution of the fungal saprotrophs in limiting of the expansion of H. fraxineus in ash leaf petioles, which may result in reduction in the inoculum of ash dieback causal agent, is discussed.

Funder

National Science Centre, Poland

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3